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We search for new long-lived particles which decay to Z° bosons by looking for Z° — ete~
decays with displaced vertices. We find no evidence for parent particles of the Z° with long lifetimes

in 90 pb~! of data from the CDF experiment at Fermilab. We set a cross section limit as a function



of the lifetime of the parent particle for both a generic Z° parent and a fourth-generation, charge
—% quark that decays into Z°b.

PACS numbers: 13.85.Qk,13.85.Rm,14.65.-q,14.80.-]
In the standard model, there are no particles with mass above 20 GeV and lifetime greater than 10~2° seconds. In
particular, there are no metastable particles that decay into a Z° boson. In pp collisions, the Z° can be produced
either in the primary interaction through quark-antiquark annihilation or possibly from a neutral-current decay of the

short-lived top quark (£ — Z°c). By searching for Z° — ete~ with the ete™ vertex displaced from the pp interaction
point, we are sensitive to non-standard-model sources of the Z°.

There are a number of extensions to the standard model that can accommodate a long-lived parent to a Z°. One
class of models contains a fourth-generation, charge —% b’ quark. A b with mass less than myz /2 has been ruled out
by experiments at the LEP electron-positron collider [1]. A recent analysis by the D@ collaboration has excluded the
existence of a b’ with mass my /2 < myp < myz +my which decays via the flavor changing neutral current, b’ — b+ [2].
A more massive b’ could decay into a Z° and a bottom quark (b’ — b+ Z°) through a loop induced flavor-changing
neutral current [3]. This is expected to be a dominant decay mode for myz + my < my < my, my, where my is the
mass of the ¢’ quark (the partner of the b'). This decay may have a small partial width due to the neutral current
decay and the fourth-generation quark mixing angles [4]. The competing charged current decay mode, ¥ — We,
could also have a very small partial width since it depends on the mixing of quarks separated by two generations.
This analysis searches for a long-lived &' in the mass region above the Z° through the decay chain & — Z°b where
Z0 — ete.

Some models of supersymmetry also allow for long-lived particles which decay to Z°. For example, a low-energy
symmetry-breaking model [5] in which the gravitino is the lightest stable particle allows for a long-lived parent of the
Z°. This model predicts that the lightest neutralino, which could decay into a Z° and a gravitino, ]\}? — 7%+ @G,
may have a long lifetime because of the small coupling constant to the gravitino.

The data used in this analysis were collected with the Collider Detector at Fermilab (CDF) during the 1993-95
Tevatron run, and correspond to an integrated luminosity of 90 pb~! of pp collisions at /s = 1.8 TeV. The CDF
detector is described in detail elsewhere [6]. We describe here only the detector components most relevant to this
analysis. The central tracking chamber (CTC), which is immersed in a 1.4 T solenoidal magnetic field, measures

the momenta and trajectories of charged particles in the region || < 1.1 [7]. The four-layer silicon vertex detector



(SVX) [8], located just outside the beam pipe, provides precise tracking in the plane transverse to the beam direction,
giving a track impact parameter relative to the beam line with a resolution of (13 + 40/Pr) pm, where Pr is the
transverse momentum of the track in GeV/c. The transverse profile of the Tevatron beam is circular with an rms
width of ~ 35 pm. Electromagnetic and hadronic calorimeters surround the solenoid. This analysis uses the central
detector region (|n| < 1), where there is full tracking efficiency.

To find a long-lived parent of the Z°, we search for events containing an electron-positron pair with a mass consistent
with a Z° and a vertex displaced from the pp interaction point. We begin with a sample of electron-positron pairs,
each lepton having |n| < 1 and Ep > 20 GeV [9]. The electron and positron are each required to be isolated, having
a total calorimeter E7 in an 17 — ¢ cone of radius 0.4 around the lepton of no more than 1.15 times the lepton E7p.
We also require that the electron-positron invariant mass be in the range 76.2 < M,, < 106.2 GeV/c? as calculated
from the calorimeter energies and the track directions. Because precision tracking measurements are critical to the
determination of the lifetime of the parent particle, track quality cuts are applied which have been optimized using a
high-statistics sample of J/1 — ptpu~ events. These include minimum numbers of hits in the SVX and CTC as well
as a maximum x? for the track fit. The electron and positron tracks are fit to a common vertex, and a good vertex fit
is required. Events are removed if the track pair is within 0.02 radians of being back-to-back (A¢ cut), since nearly
collinear tracks have a large uncertainty in the vertex position. The invariant mass spectrum of the 703 events that
pass all cuts is shown in Figure 1.

To search for long-lived Z° parents, we measure L,,, the distance in the transverse (r — ¢) plane between the
pp interaction point and the ete™ vertex. For a long-lived parent, L,, = v8;yct, where ¢ is the proper decay time
and 3., is the transverse component of the parent’s velocity divided by ¢. L.y, is a signed quantity, the sign being
that of the dot product between two vectors in the transverse plane: the net Py of the ete™ pair and the vector
pointing from the pp interaction point to the eTe™ vertex. L,, significantly less than zero is generally due to tracking
mismeasurement. For standard model direct Z° production (¢gg — Z° — ete™), we expect L,, ~ 0, since the Z°
lifetime is negligible. L, significantly greater than zero suggests that either the Z° is a decay product of a long-lived
parent particle or there is tracking mismeasurement.

The Ly, distribution is shown in Figure 2 after all of the cuts have been applied. The observed distribution is in
good agreement with the expected L, distribution for prompt Z's, obtained from the L,, uncertainty measured in

each event from propagation of tracking errors. Events with large |L;,| that are due to mismeasurement should be



symmetric around zero. The number of events with L., significantly less than zero is thus an effective measure of this
background. To search for long-lived sources, we have examined the events with |L;,| > 0.1 cm, the point beyond
which less than one event is expected from prompt Z°s based on the L, uncertainty distribution. We observe 1 event
with Ly, > 0.1 cm and 3 events with L,, < —0.1 cm. Thus, there is no evidence for a long-lived parent of a Z°. We
proceed to set limits based on this observation.

The production cross section times branching ratio [10] for long-lived parent particle(s) decaying to a Z° and passing

our data selection criteria is calculated by normalizing to the observed prompt Z° boson signal. It can be written as

nx Az -0z -Br(Z° —ete™)

ny 'FDY ‘€A -€X2 -EL”

oc-Br-Ax =

where Ax is the acceptance for finding both the electron and the positron in the geometry of the detector, nx is
the number of events seen with a significant decay length (> 0.1 cm), Az = 22 + 1% is the probability that the
e~ and et from a directly produced Z° are in the central part of the detector, €a is the efficiency of the opening
angle cut (87 £ 1% in the direct Z° sample), €y2 = 94+ 1% is the efficiency of the x? cut, €r,, is a correction factor
for the number of events seen in the L, window (0.1 em< Lz, < 1.5 ¢m), and Fpy = 0.96 £ 0.01 is a factor to
correct for Drell-Yan contamination in the prompt Z° sample. We normalize to the measured Z° cross section by
using oz - Br(Z° — ete™) = 231 4+ 12 pb [11] and nz = 859, the number of Z° events left after the electron pair
and tracking cuts. For a fixed A;y = v8;ycT, where 7 is the lifetime of the parent particle, the efficiency in the L,

—0.1 cm —1.5 cm

window is €, = e Yev —e Yov

For the 95% confidence level upper limit on the cross section, we make the conservative assumption that there is
no background and thus do not perform a background subtraction. We also conservatively use the opening-angle cut
efficiency measured in the direct Z° sample. Z° bosons from heavy particle decay would generally be boosted in the
transverse direction, thus increasing the cut efficiency. We use a Poisson distribution based on the one observed event
smeared by the gaussian systematic uncertainties in the acceptance and efficiencies. We find the 95% confidence level

cross section limit to be

0.36
—0.1 cm —1.5 cm

(5 —e )

oc-Br-Ax <

pb

The cross section limit as a function of A;y is shown in Figure 3.



A cross section limit can also be determined for &’ pair production. The b’ quark should have the same production
cross section as a function of mass as the top quark because both are pair-produced via the strong interaction. We
would also expect to find several quark jets in the event if a b’ pair were produced, for example g§ — b'6’ — Z2°62° —
bete~bgg. We have thus required that there be 2 or more jets with |n| < 2 and Er > 10 GeV. The Ly distribution
for the 27 events surviving the jet cut is shown in the inset in Figure 2. The value of L;, above which we expect less
than 1 event is now 0.01 cm. We find one such event in our data sample.

The cross section limit for b’ pair production is given by

oy - Br(bd — Z2° + X —sete” +X) =

ny Az -0z - Br(Z2° — ete™)

ny 'FDY -Abl *€jet -€A¢-€X2 -EL” -FI

where ny is the number of events seen with L,, > 0.01 cm. If ¥’ always decays into Z°b, the probability that at
least one Z° decays into ete™ is 0.0662. The quantities €a, (the efficiency of the opening angle criterion), €j.; (the
efficiency of the jet requirement), and Ay (the probability of observing an electron and a positron in the detector
fiducial volume) all depend on the mass of the . We use the Herwig Monte Carlo to estimate these quantities as a
function of the ¥’ mass [12]. We use v, distributions for the 4’ from the Monte Carlo to estimate ¢z, . This efficiency
depends on the mass of the ¥’ and the lifetime, which is a function of the fourth-generation mixing angles between

—0.01 cm —1.5 cm

the quarks. For a particular lifetime, we find €;,, by calculating e *-v —e *»» for each event and averaging the

entire Monte Carlo sample. We also include in the calculation of the b’ cross section a factor Fr = 0.92 & 0.05 that
corrects for the reduced electron isolation efficiency due to the expected jets in a b’ event. The excluded lifetimes for
a b’ of mass 110 GeV/c? are shown in the inset in Figure 3. The excluded region of the ' mass versus lifetime plane
is shown in Figure 4 using the theoretical cross sections in [13] and the assumption that Br(b' — Z° + b) = 100%.

In conclusion, we find no evidence for new particles with a long lifetime decaying to Z° bosons. We set 95%
confidence-level cross section upper limits on new particle production as a function of A;y. A range in mass and
lifetime for a fourth generation b’ quark decaying to Z°b has been excluded.
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FIG. 2. The L., distribution of the 7% after ap-
plying all cuts. The data are represented by the cir-
cles. The histogram is the expected L., distribution
for prompt Z°s based on the measured L, uncertainty
in the event sample. The inset shows the distribution
after the 2 jet requirement is applied. The vertical
dashed lines separate the prompt and non-prompt re-
gions.
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FIG. 3. The 95% confidence level upper cross sec-
tion limit for o - Br times the acceptance for an elec-
tron-positron pair to be within the detector as a func-
tion of fixed A;y. Cross sections above the curve have
been excluded at the 95% confidence level. The inset
shows the exclusion curve and the theoretical predic-
tion for a b’ quark of mass 110 GeV/c? as a function
of its lifetime, assuming 100% decay into Z°b.
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FIG. 4. The hatched areas in this plot represent the
95% confidence-level regions of b mass and lifetime
that have been excluded. For ¢ = 1 cm, we have
excluded up to a mass of 148 GeV/c?.



